Systems Biology for wheat improvement

IWGSC (2018

Introduction

Wheat production has grown tremendously in the past six decades

Tadesse et al. (2019)

Figure 1. World wheat yield, production and area from 1961 to 2016 (FAO, 2018).

Global warming- the history of temperature anomaly between 1850 to 2018

Though most of potential wheat crop yield is lost to abiotic stresses

Fig. 1.7 Estimated crop losses due to biotic and abiotic stresses (Bayer Crop Science 2008, http://www.seedquest.com/News/releases/2008/october/23973.htm)

Ashraf et al. (2012)

Drought and Salinity specifically limit photosynthesis and growth (**common and unique pathways**)

De Carmen Orozco-Mosqueda et al. (2020)

Drought and Salinity cause reduction of up to 92% and more than 50%, respectively

Reductions	in grain yield	In wheat caused	by drought success
Growth stage	Stress type	Yield reduction	Reference
Booting to maturity	Severe stress	37%	Shamsi <i>et al.</i> (2010)
Booting to	Severe	27%	Shamsi and
maturity	stress		Kobraee
Heading	Mild stress	57%	(2011) Balla <i>et al.</i> (2011)
Heading to	Severe	44%	Prasad et al.
Productly	stress		(2011)
Heading and	Prolonged	58-92%	Dhanda and
grain	mild		Sethi (2002)
filling	stress		
Pre-annesi	Prolonged	18_530	wajid et al.
	mild		(2007)
	stress	0.00	(2011)
Anthesis	Mild stress	8%	Akram (2011)
Anthesis	Mild stress	19%	Sangtarash (2010)
Anthesis	Severe stress	11–39%	Jatoi <i>et al.</i> (2011
Anthesis	Severe stress	43-51%	Gupta <i>et al.</i> (2001)
Post-anthesis	Mild stress	1-30%	Eskandari and Kazemi (2010)
Post-anthesis	Prolonged mild stress	13–38%	Majid <i>et al.</i> (2007)
Grain filling	Severe stress	9–78%	Guóth et al. (2009)
Grain filling	Severe	31%	Shamsi et al.
to maturity	stress		(2010)
Grain filling	Severe	35%	Shamsi and
to maturity	stress		Kobraee (2011)

EL-Hendawy et al. (2017)

Farooq et al. (2014)

The original (conventional) breeding model for plant improvement consists of cross-breeding and selection

Zamir (2001)

But transformation and genome editing expedited the genetic integration

QTL mapping (fragment markers) and GWAS (SNP markers) are relatively modern tools to discover relevant genes

Omics recently became the newest method for relevant gene discovery

Dalal et al. (2020)

The problem is that the amount of data from Omics exceeds human capacity and requires computational methods

Systems biology does exactly that- the use of computational methods in deciphering biological-derived technology-enabled high-throughput data

Hypotheses

- Different cultivars/lines of wheat have a genetic, transcriptomic, metabolomic and microbiomic landscape (species/line-unique and similar) affecting drought and salinity responses.
- A **Systems Biology** approach using novel **correlation network analysis and machine learning** can highlight and identify important traits and pathways for wheat stress tolerance.

Grain—

1) Whole-plant in-depth physiological growth experiments under control, drought and salinity

Whole plant physiological analysis

2

1

0

06:00 h

7:00 h

9 Day

12:00 h

в

С

Whole-

Physiology (phenomics) Biochemistry Metabolomics Microbiomics Transcriptomics

Drought

Correlation Network Analysis Machine learning Future work (possible AI with Menachem)

Physiology & Biochemistry

Diversity and variation in 2nd experiment

WGSC (2018)

Creating metabolomic networks and metabolic pathway predictions

Fi	le Hom	e Insert	Page La	yout Forr	mulas Da	ata Revi	ew
U	POSSIBLE	JAIA LOSS S	some reacures	might be lost	ii you save tri	IS WORKDOOK II	n the c
A17 • : × ✓ fx 2229_C1							
	Α	В	С	D	E	F	
1		4-hydroxy,	alanine	asparagine	asparagine	aspartic ac	citric
2	694_C1	302	369822	213	9748	201281	4
3	694_C2	217	301062	220	43495	313091	7
4	694 C3	368	694476	427	65052	523714	8
5	1144 C1	599	960712	778	103950	555819	14
6	1144_C2	436	644878	420	113314	458236	10
7	1144 C3	387	944438	1178	890038	416620	9
8	2059 C1	1175	699272	1033563	4341067	1170484	9
9	2059 C2	311	588344	925594	2722994	720483	6
10	2059 C3	1703	650614	850293	3107527	924745	9
11	2050 04	015	100100	650	0040	242002	2

ML train			
Positive pathways	PlantCyc		
Negative pathways	MetaCyc		
Negative	Random metabolites		

ML test (known plant pathways)

Metabolic pathway predictions

Prediction sensitivity test

Fructose

Pathway	Con Pred	Con Sens	Dro Pred	Dro Sens	Sal Pred	Sal Sens
L-carnitine biosynthesis	0.497	0.257	0.697	0.532	0.859	0.765
L-arginine biosynthesis I (via L-ornithine)	0.155	0.452	0.927	0.888	0.570	0.562
indole-3-acetate inactivation VIII	0.155	0.527	0.927	0.863	0.928	0.822
glycine biosynthesis III	0.497	0.374	0.697	0.586	0.859	0.764
nitric oxide biosynthesis II (mammals)	0.497	0.375	0.801	0.703	0.928	0.749

υ

IWGSC (2018

D

Pipeline for Transcriptomics

MARS-Seq

Tzfadia et al. (2018)

WGCNA

Toubiana et al. (2019)

Offipring, O I O I O I O

g generation

GA

rrelate eigengvectors \mathcal{I} to Trait :

→ cor(Trait, £) = .92

 $\rightarrow cor(Trait, \mathcal{E}) = .87$

 $\rightarrow cor(Trait, \mathcal{E}_{c}) = .91$

max(fitness proving 1 1 0 0 0 1 1)

d) Mutation

flip vector value by mutation rate

Offigring, O I O I O 0. O

fitness value

WGCNA

a) Initialize algorithm

rrom, 0 I 0 0 0 I I

b) Estimate fitness

npute 1st principal component o

prcomp(t(Expr[+,Chrom,])) = .58 -.61 -.47 -.2

prcomp(t(Expr[•,Chrom,])) = .58 .61 .46

c) Reproduction

reproduce by recombination

Oren, 0 1 0 0 0 1 1

mn 0 0 1

 $comp(t(Expr[•,Chrom_])) = .50 -.61 -.55 -.$

osome matrices

ITS1 and ITS2 Amplicons (Fungal)

Recently been suggested as a better suited target to extend the coverage of fungal kingdom. (Nilsson et al., 2019)

Microbiomics – novel approach

16S rRNA Gene Amplicons

ITS1 and ITS2 Amplicons (Fungal)

Microbiomics – novel approach

Provides Superior Representation of a Diverse Microbial Community Versus V3-V4 Only

Figure 2. The Swift Amplicon 16S+ITS Panel covering all V1-V9 regions provides sensitive detection and accurate representation of each species in the sample compared to standard methods interrogating the V3-V4 region alone. Organisms marked in red were underrepresented by V3-V4 only method. Input DNA was a mix of 20 bacterial species (ATCC[®] MSA-1003[™]) tested with the Swift Amplicon 16S+ITS Panel, sequenced with Illumina[®] MiSeq[®] V3 (2x300bp reads).

Correlation heatmap between post-GA genes' expression data and physiological, biochemical and microbiome parameters

The effect of Virus-Induced Gene Silencing on L-carnitine biosynthesis under salinity conditions

Loss of natural diversity

Roots

Climate, environment, pests, diseases, nutrition.....

The Lieberman Okinow Genebank

20 species ~16,000 accessions ~900 sites Wild wheat Goat grasses (11 species) Barley (4 species) Oat Rye Brachypodium

2,500 8,500 3,000 1,500 50 400

IWGSC (2018)

Our goal in to produce super wheat for a better future

Grain — (

A genome-wide association study in wild emmer wheat provides a target for seed weight increase

Background

The central dogma – the DNA sequence ("genotype") dictates the protein sequence which dictates the physical characteristics ("phenotype")

Even changes in single nucleotides (SNPs) cause phenotypic changes

Subject 1: ACTCGCTAGGTCGATC ACTAGCTACTGGAATCGCTTGCA Subject 2: ACTCGCTAGGTCGATC ACTAGCTACTGGAATCGCTTGCA Subject 3: ACTCGCTAAGTCGATC ACTAGCTACTGAAATCGCTTGCA Subject 4: ACTCGCTAAGTCGATC ACTAGCTACTGGAATCGCTTGCA Subject 5: ACTCGCTAAGTCGATC ACTAGCTACTGGAATCGCTTGCA Subject 6: ACTCGCTAAGTCGATC ACTAGCTACTGGAATCGCTTGCA

GWAS (genome-wide association study) uses SNPs to discover relevant genes

Genotypes in natural population

Plissonneau et al. (2017)

Oregon

A population of Td (an ancient progenitor of Ta; bread wheat) from all over Israel was used in a GWAS

longitude

Rahman et al. (2020)

Seed weight is differential for haplotypes of S5_683245061

The SNP results passed a permutation test

Α

D

The area and nitrogen content were differential for haplotypes of S5_683245061

The TILLING mutant shows higher seed weight and seed area, higher nitrogen content while *showing* lower seed number and lower yield per spike

The TILLING mutant shows altered grain quality

References

٠

٠

- Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cárdenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CNJ. 2016. Advancing crop transformation in the era of genome editing. The Plant Cell 28:1510-1520.
- Ashraf M, Ahmad MSA, Öztürk M, Aksoy A. 2012. Crop improvement through different means: challenges and prospects. In: Ashraf M, Öztürk M, Ahmad MSA, Aksoy A. (Eds.) Crop production for agricultural improvement (pp. 1-15). Springer Science & Business Media.
- Claesson MJ, Wang Q, O'Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O'Toole PW. 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Research 38:e200.
- Del Carmen Orozco-Mosqueda M, Glick BR, Santoyo G. 2020. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research 235:126439.
- Dalal N, Jalandra R, Sharma M, Prakash H, Makharia GK, Solanki PR, Singh R, Kumar A. 2020. Omics technologies for improved diagnosis and treatment of colorectal cance: technical advancement and major
 perspectives. Biomedicine & Pharmacotherapy 131:110648.
- Farooq M, Hussain M, Siddique KHM. 2014. Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences 33:331-349.
- Halperin O, Gebremedhin A, Wallach R, Moshelion M. 2017. High-throughput physiological phenotyping and screening system for the characterization of plant-environment interactions. The Plant Journal 89:839-850.
- Hamblin S. 2012. On the practical usage of genetic algorithms in ecology and evolution. Methods in Ecology and Evolution 4:184-194.
- Langfelder P and Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics 9:559.
- Liu Z, DeSantis TZ, Andersen GL, Knight R. 2008. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Research 36:e120.

- Manmathan H and Lapitan NLV. 2013. Measuring germination percentage in wheat. Bio-protocol 3:e866.
- Naylor D, DeGraaf S, Purdom E, Coleman-Derr. 2017. Drought and host selection influence bacterial community dynamics in the grass root microbiome. The ISME Journal 11:2691-2704.
- Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. 2019. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nature Reviews Microbiology 17:95-109.
- Plissonneau C, Benevenuto J, Mohd-Assaad N, Fouché S, Hartmann FE, Croll D. 2017. Using population and comparative genomics to understand the genetic basis of effector-driven fungal pathogen evolution. Frontiers in Plant Science 8:119.
- Rossi RL and Grifantini RM. 2018. Big data: challenge and opportunity for translational and industrial research in healthcare. Frontiers in Plant Science 5:13.
- Tadesse W, Sanchez-Garcia M, Assefa SG, Amri A, Bishaw Z, Ogbonnaya FC, Baum M. 2019. Genetic gains in wheat breeding and its role in feeding the world. Crop Breeding, Genetics and Genomics 1:e190005.
- Toubiana D, Puzis R, Sadka A, Blumwald E. 2019. A genetic algorithm to optimize weighted gene co-expression network analysis. Journal of Computational Biology 26:1349-1366.
- Tzfadia O, Bocobza S, Defoort J, Almekais-Siegl E, Panda S, Levy M, Stome V, Rombauts S, Jaitin DA, Keren-Shaul H, Van de Peer Y, Aharoni A. 2018. The 'TranSeq' 3'-end sequencing method for high-throughput transcriptomics and gene space refinement in plant genomes. The Plant Journal 96:223-232.
- Villa A and Sonis ST. 2020. 2-System biology. In: Translational Systems Medicine and Oral Disease. Sonis ST and Villa A (Eds.), Academic Press, pp. 9-16.
- Zamir D. 2001. Improving plant breeding with exotic genetic libraries. Nature Reviews Genetics 2:983-989.